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Symmetry of Microwave Devices with Gyrotropic
Media-Complete Solution and Applications

Victor A. Dmitriyev

Abstract—In this paper, a general procedure for constructing
all the possible solutions for symmetrical devices and compo-
nents with gyrotropic medias is suggested. Using the theory of
symmetry and crystallographic principles, all the color groups
and corresponding matrices [S], [Z], and [Y ] of the devices
can be obtained. With this approach, it is possible to select
those symmetrical structures and magnetic fields, which can be
considered as candidates in the process of synthesis of microwave
devices and components. In order to illustrate the procedure,
some examples are given.

I. INTRODUCTION

M ANY types of ferrite and magnetized semiconductor
devices in the microwave region have been suggested

during the last 40 years. Different physical effects are uti-
lized in such devices. Among these effects may be named
ferromagnetic resonance, Faraday rotation, field-displacement,
nonreciprocal phase-shift, Cotton–Mouton effect, and others.

Along with rigorous solutions of boundary problems some
engineering approaches, for example the theory of microwave
circuits, are widely used for investigation of devices with
gyrotropic medias. Among the existing methods, the symmetry
theory occupies a special place. This theory supplies exact
information because no approximations are made under its
application. The symmetry principles are often utilized to ver-
ify the validity of new physical laws. The theory of symmetry
can provide a good deal of general and useful information by
means of simple calculations. Sometimes this information is
unique and cannot be obtained by other methods.

The theory of electromagnetic field symmetry in gyrotropic
media has been considered by many authors [1]–[3]. Several
papers of the author [4]–[7] have been devoted to the applica-
tion of crystallography methods and principles to microwave
circuits with gyrotropic media. It has been shown that color
groups, the Curie’s and Newmann’s principles known in
crystallography, may be successfully used in investigation of
microwave circuits and for the synthesis of devices.

Color (magnetic) groups include the symmetry in
space–time coordinates, and the time coordinate is connected
with the presence of an external dc magnetic field. Curie’s
principle defines the symmetry of a complex structure. In this
case, it leads to a superposition of the geometry symmetry
and symmetry of the dc magnetic field. Newmann’s principle
in crystallography deals with the connection of a property
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tensor symmetry and the geometrical symmetry of a crystal.
The matrices , , and may be considered as tensors
and connect the space–time symmetry of a device with
the symmetry of its parameter matrices. Hence, there is an
analogy here: tensor–matrix, crystal–device. A theoretical
basis of the application of Newmann’s principle to microwave
circuits is given in [7].

Using these approaches and also the concept of gyrotropic
symmetry (GS) and gyrotropic antisymmetry (GA) suggested
in [4], it is possible to reduce the number of independent
elements of parameter matrices (, , and ) appreciably,
to predict some of the properties of devices, to explain effects
in novel devices, and to check the correctness of solving a
problem by other methods and the results of computations
and measurements. It allows one to make a first step in the
synthesis of devices.

It will be shown in this paper how to find all the possible
solutions for symmetrical gyrotropic structures using these
principles, i.e., all the possible parameter matrices. The prob-
lem of determination of the structure of the dc magnetic field
will be also discussed. Several examples will be given in order
to illustrate the theory. One of them is a quadratic waveguide,
where polarization effects are possible. Some properties of
such waveguides will also be investigated in this paper.

This approach may be used for any symmetrical structure
independently on the type of waveguide or transmission line
and physical effect being used.

II. A GENERAL APPROACH TO THEPROBLEM

The problem of searching such a structure which is capable
of fulfilling a certain microwave function (or several ones
simultaneously) may be formulated in different ways. It may
be given the ideal matrix of a device (a component) only and it
then becomes necessary to find geometrical structures and dc
magnetic fields which allow one to get the best approximation
to this matrix. This problem has been considered in [7]. The
structure of the dc magnetic field may be fixed and the task
is to find a geometry of the device. At last, the geometrical
structure may be given and it is necessary to find the symmetry
of the dc magnetic field in order to get the desired matrix. This
situation exists, for example, in waveguides and transmission
lines. Here, the last problem will be considered, though the
results of this paper may be used for solving all the mentioned
problems.

Usually when symmetry of a scattering matrix is discussed
it means its symmetry about the main diagonal. In this paper,
the symmetry of shall be considered with a broad meaning,
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namely in space–time coordinates. The symmetry of a matrix
about the main diagonal is the symmetry of time only. But if

is treated as a tensor, it is possible to consider symmetry
of the matrix under a different coordinate transformation,
(i.e., if there is such symmetry, the matrix is not changed
under certain coordinate transformations). In a general case,
symmetry about both changing space coordinates and time
needs to be considered.

On designing different microwave elements with gyrotropic
media the following procedure may be suggested:

1) determine the nonmagnetic group of symmetry of the
given geometrical structure;

2) using Curie’s principle, define the nonmagnetic group
of symmetry of the system: geometrical structure plus
isotropic ferrite element, if these symmetries are differ-
ent;

3) define all the possible magnetic groups of the second
and the third category using the diagram in Fig. 8;

4) determine generators of the chosen magnetic groups
using Table II;

5) calculate the matrices for all magnetic groups using
GS and GA commutation relations;

6) choose those groups of symmetry which provide us with
the necessary matrix;

7) define the structure of the dc magnetic field.

Further investigations may include the choice of a necessary
physical effect, calculations using the unitary condition, elec-
trodynamic calculations, and so on. In the following sections,
the main steps of the above algorithm will be considered.

III. A D ESCRIPTION OFMAGNETIC GROUPS OFSYMMETRY

To begin an investigation of symmetrical devices with
gyrotropic medias, systematic information about magnetic
point groups is needed, which shall be applied first to crys-
tallographic point groups. There are three categories of such
magnetic groups [8].

1) The 32 groups including the operator of the time inversal
. They describe nonmagnetic crystals. The matrix

in this case is symmetrical about the main diagonal.
2) The 32 groups without any form of the time reversal

. It is a case of magnetic media, the matrix in
general is nonsymmetric about the main diagonal, but
for finding the relations between some matrix elements,
there are only GS cases, and the commutation relations
(identities) coincide with those for nonmagnetic media.

3) The 58 groups (real magnetic groups) which include the
operator only in combination with spacial operations.
These groups also describe magnetic media. There exist
two types of identities, namely, for the cases of GS and
GA [5], which can be used for the calculation of .

In this paper, the concern is with the second and the third
categories of the magnetic groups. To treat these groups, the
table of crystallographic groups in two notations is shown
in Table II [8]; additionally, the number of elements for
every group is also given. The Schubnikov and Schoenflies
notations used in Table II complement each other. The Schoen-
flies notation shows the whole group and its subgroups of

elements with and without the operation of time inversion.
The Schubnikov’s notation is very useful for the purposes
of this paper because it indicates generating elements of
symmetry (i.e., axes, antiaxes, planes, and antiplanes). For
instance, in the group there are four-
fold antiaxis , a plane of symmetry which coincides with
the antiaxis , and an antiplane of symmetry which is
perpendicular to the antiaxis. The generating matrices may
be chosen corresponding to these three elements. Hence, by
using Table II one can find necessary generating matrices.

In order to find all the possible solutions, information
about subgroup decomposition is also needed. The diagram
of decomposition of the 32-point crystalligraphic groups is not
widely available, so it shall be quoted in Fig. 8. In comparison
with the diagram given in [8] dotted lines have been added here
which correspond to the subgroups of index .

The crystallographic magnetic groups which have been
described above do not comprise all of the possible symmetries
which can be met in practice. For instance, the magnetic
groups , , and others are not presented in Table II and on
the diagram. Generally speaking, there are an infinite number
of point groups. The whole system of the nonmagnetic point
groups of symmetry is given in [9] including the cases of
an infinite number of elements. To find magnetic noncrys-
tallographic point groups, a known algorithm [10] may be
used.

IV. SYMMETRY AND STRUCTURE OF THEDC MAGNETIC FIELD

Notice that the problem of determination of a symmetry
group of the given dc magnetic field (or the current
producing this field) is unique but the inverse problem is not.

If the magnetic group of symmetry is known, how may a
corresponding structure of be found? An infinite number of
solutions may in fact be found for the problem for every given
magnetic group (not violating, of course, the Gauss’ law). For
the group ) for instance, the dc magnetic field may be
oriented parallel to the antiplane of symmetry in any direction,
or normal to the antiplane but in opposite directions on both
sides of it, and so on. Another example: how to get only one
plane of symmetry ? One of the possible solutions is as
follows. The direction of in this case may be perpendicular
to the plane and must vary nonsymmetrically in
this plane.

Sometimes, it is more convenient to solve the problem using
the symmetry of electric current which produces the desired dc
magnetic field. In this case, it is necessary to bear in mind that
electric current is a polar vector whereas is an axial vector
and in mapping there must be a distinction between them.

In some cases, it is useful to consider structures of the
dc magnetic field for the continuous magnetic groups. If a
group of symmetry contains an -fold axis, it is a continuous
group. This group is indicated in the Schoenflies’ notation
by and by in the Schubnikov’s notation. There are
seven continuous magnetic groups of the second category and
seven continuous magnetic groups of the third category [11].
In order to give an interpretation to these groups, one can
imagine them as some geometrical models. Several examples
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Fig. 1. Geometrical models for continuous magnetic groups of the second
and the third category.

of such models are shown in Fig. 1. The arrows on the models
denote the directions of currents which produce a dc magnetic
field. The magnetic field with the symmetry for
example, may be produced by a current line, the field with the
symmetry —by a coil with direct current, the field
with the symmetry —by applying these two sources
simultaneously, etc.

Solving the problem of finding the necessary structure of
the dc magnetic field with that continuous magnetic group for
which the given group of geometrical symmetry of the device
is a subgroup may now begin. In the process of solving the
problem the continuous group may be lowered in order to
obtain the necessary matrix .

To construct the structure of the dc magnetic field, the
following method may be useful. A minimal symmetrical
volume (a part of the device) of the given structure may be
defined and the necessary structure of set at this time. In
other symmetrical parts of the device, the field is calculated
as follows. For the GS:

and for GA:

where are the matrices which define symmetrical transfor-
mations [3].

An analogy with the work [12] may be seen here where
a minimum sector of waveguide cross section is defined for
solving the whole problem. But in this problem, the symmetry
of the electromagnetic field may be discussed only in the case
of GS and nothing may be said about the symmetry of the
electromagnetic field in the case of GA. Reference in the
last case can only be made about the antisymmetry of the
dc magnetic field .

Notice that the number of sources of the dc magnetic
field may be different. It may be one common source for all
symmetrical parts of the device or there may be several of them
for different parts of the device. This problem needs special
consideration in every specific case. It particularly depends on
the physical effect being used.

V. ILLUSTRATION I—FERRITE WAVEGUIDES

WITH DIFFERENT SYMMETRIES

The types of waveguides and transmission lines are many
and diversified. Over 100 different types of these key elements
of any microwave system have been suggested using different
physical effects, on the basis of many of them nonreciprocal
and control ferrite elements and components are designed.
They are isolators, filters, phase shifters, nonreciprocal quarter-
wave plates, electronic rotable half-wave plates, etc.

Using the symmetry theory in [12] some properties of
uniform waveguides are discussed. In this paper, only the
symmetry of the cross section of waveguides is taken into
consideration and the length of the waveguide is infinite.
Hence, the problem is two-dimensional. The point groups
which describe objects with all three finite dimensions shall
be used here, thus dealing with a three-dimensional (3–D)
problem.

To clarify the approach discussed so far, some specific
examples shall be considered beginning with uniform
waveguides with gyromagnetic medias. There are only four
types of possible matrices in the cases of waveguides
without polarization effects [14]:

The cross sections of waveguides may have the symmetries
and ( , , , , ). When , the limit

case which describes a circular waveguide is present. A section
of the waveguides with some dielectric, magnetodielectric,
or metal insertions may have different symmetries, including
continuous groups , , , , and (the
groups and with transform themselves into
one group ).

Proceeding from the highest symmetry of the given
waveguide section with isotropic media in Fig. 8 downwards,
all the possible magnetic groups for this waveguide may be
found. To define all the groups of the third category, starting
with a certain group , there must be a descent fromuntil
the group along all the possible lines disregarding dotted
and heavy lines. These lines correspond to the subgroups of
index and to noninvariant subgroups accordingly. For
the groups of the second categories, all the possible lines
including dotted and heavy ones must be gone through. The
whole number of groups of the second category is equal to the
number of groups which are presented in the corresponding
tree. The number of groups of the third category is equal to
the number of thin lines of the tree. Thus, all the possible
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(a) (b)

Fig. 2. Examples of the waveguides with the symmetryCs. (a) Rectangular
waveguide. (b) Coaxial line. The group tree and possible magnetic groups of
the second and the third category for these waveguides.

(a) (b) (c)

Fig. 3. Examples of the waveguides with the symmetryC2v . (a) Microstrip
line. (b) Image line. (c) Single-ridged waveguide. The group tree and possible
magnetic groups of the second and the third category for these waveguides.

solutions lie in the symmetry tree between the groupon the
top and the group at the bottom.

Several specific symmetries of existing waveguides shall
now be examined. In Figs. 2–4 different types of waveguides,
their symmetries and possible magnetic groups of the second
and the third categories, are presented. The cross sections of
the waveguides in Fig. 2 have the symmetry. A section
of such isotropic waveguides may have only one plane of
symmetry which is perpendicular to the longitudinal axis of the
waveguides. Hence, this section can exhibit only the symmetry

. Starting from the group in Fig. 8, only allows to go
down to the group . Hence, the group tree consists of the
elements and . Possible magnetic groups of the second
categories are and and of the third category are .
This completes the list of magnetic groups which are possible
in the waveguides being examined.

Sections of the isotropic waveguides in Fig. 3 have the
symmetry . The corresponding group tree consists of four

(a) (b) (c)

Fig. 4. Examples of the waveguides with the symmetryD2h. (a) Rectan-
gular metal or dielectric waveguide. (b) Elliptical dielectric transmission line.
(c) Double-ridged waveguide. The group tree and possible magnetic groups
of the second and the third category for these waveguides.

elements: , , , and . All the possible magnetic
groups for this case are given in Fig. 3.

Several waveguides with higher symmetry are shown
in Fig. 4. In this case, the group tree is thicker and there are
eight groups of the second category and 12 groups of the third
category.

From Table II, generators of the groups may be found and
then using corresponding commutation relations calculate the
matrices , , and [5].

It is an easy matter to construct tables (peculiar catalogues)
of all possible symmetries and to obtain corresponding param-
eter matrices for all existing waveguides.

VI. I LLUSTRATION II—QUADRATIC FERRITE WAVEGUIDE

WITH POLARIZATION EFFECTS

Attention should now be directed to the next specific
example: to find those symmetries which can provide theoret-
ically polarization effects in a quadratic gyrotropic waveguide
(Fig. 5).

Two cases of such waveguides are well known in the
literature: the waveguide with longitudinal dc magnetic field
where the Faraday effect is observed and the waveguide
with transverse quadrupole magnetic field where the Cot-
ton–Mouton birefringence exists [6].

In order for a polarization effect to be possible in the
waveguide, the matrix must have the following structure:

where the crosses signify that these matrix elements must
be different from zero, and the dots signify that these elements
are not important for the purpose of this discussion (on this
stage of investigations).
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(a) (b)

(c)

Fig. 5. Quadratic ferrite waveguides: (a) with longitudinal dc magnetic field,
Faraday effect exists. The corresponding matrix[S]F is written in Table I,
(b) with transverse quadrupole dc magnetic field, Cotton–Mouton effect exists.
The corresponding matrix [S]C is written in Table I, and (c) with transverse
quadrupole dc magnetic field, Cotton–Mouton effect is impossible.

The symmetry of the cross section of the isotropic quadratic
waveguide is , the symmetry of its section is . In the
Shubnikov’s notation, this symmetry is . Hence,
using three corresponding generating matrices, the following
scattering matrix of the waveguide section may be found:

(1)

This matrix has the simplest structure and contains two in-
dependent parameters. Between this simplest matrix and the
most general matrix for the group with 16 independent
parameters, a variety of with a different structure and a
different number of parameters lies.

Presented here is a reproduction of part of Fig. 8 (see
Fig. 6), which corresponds to the decomposition of the group

. It can be seen in this figure that in order to find the
complete solution of the problem, 29 magnetic groups of the

Fig. 6. The group tree for the groupD4h of the quadratic waveguide.

second category and 15 magnetic groups of the third category
must be considered. For some of the groups [for example

, , ] and for groups with lower
symmetries several variants of symmetry elements orientations
must be considered. For example, in the group ,
it is necessary to investigate three cases: when the axisis
oriented along the , , or coordinate axes and in each
of these variants there are two subvariants with two different
orientation of the antiaxis (some of these variants and
subvariants, however, may turn out to be equivalent). Three
variants of different orientation of antiaxisexist in the group

and three variants of orientation of the antiplane
in the group . The four-fold axes , , and may
be oriented only along the waveguide axisand the choice of

and axes is arbitrary. Therefore, for those groups where
these axes are present, only one variant is possible.

For every magnetic group there must be calculated (for a
fixed ) two possible orientations of the ports [Fig. 5(b)
and (c)] because the matrices in these two cases may be
different. This situation exists, for example, in the waveguide
with a quadrupole dc magnetic field. It may be seen from the
corresponding matrix in Fig. 5(c) that the ports 1, 4 and 2, 3 are
decoupled and a polarization effect is impossible. With such
orientation of the ports, the normal modes of the waveguide are
taken into consideration [13]. For the ports oriented as shown
in Fig. 5(b), the polarization effect is possible because of the
description in terms of orthogonal coupled modes. For the
waveguide with Faraday effect, both of the ports’ orientations
lead to the identical matrices.

With the given symmetry of a section of the waveguide,
the resultant symmetry by modifying the symmetry of the
ferrite element and/or symmetry of may be changed.
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TABLE I
THE SCATTERING MATRICES FORQUADRATIC FERRITE WAVEGUIDES DESCRIBED BY THE FIVE HIGHEST MAGNETIC GROUPS OF THETHIRD CATEGORY

Fig. 7. An equivalent model of the waveguides with polarization effects.

The recording of all possible solutions of the problem
requires excessive space. Presented here are only some of
them which possess high symmetry. These cases are the most
interesting. Notice that in order to find the matrix , it is
not necessary at this stage of investigation to know the real
geometrical structure of the device and the structure of the dc
magnetic field.

The results of the calculations for the five highest magnetic
groups of the third category are given in Table I. Polarization
effects (Faraday and Cotton–Mouton) are possible in two
cases, Notice that in many cases of lower symmetries the
existence of the polarization effects is expected as well, first of
all in those groups which are subgroups of the group
and . It may also be assumed that in some cases of
lower symmetries both of these effects exist.

VII. D ISCUSSION

The above matrices may be analyzed by applying unitary
conditions, but some results can be obtained under inves-
tigations of the matrices’ structure. While comparing and
scrutinizing the matrices and [Fig. 5(a) and (b)]
each of these four-ports as two coupled lines may be consid-
ered: the first line connects the ports 1 and 3 and the second
line connects ports 2 and 4 (Fig. 7).

The symmetry of 3–D finite objects may include some
nonuniformity in the waveguides which does not change the
symmetry group of the section. For example, the insertion of a
circular section of a dielectric, ferrite, or metal rod on the axis
of a waveguide with symmetry does not change the initial

Fig. 8. Subgroup decomposition of the thirty-two point crystallographic
groups. A heavy line indicates that the subgroup is not invariant, a dotted
line indicates the subgroup is not of index 2 under the above group.

symmetry of the empty waveguide, but such a section will
cause a reflection (which is inevitable in a frequency band).
That is why the reflection coefficients in all matrices do
not equal zero.

Notice first of all that the reflection coefficients in the
lines 1–3 and 2–4 of the four-ports under consideration are
equal. For the Faraday waveguide (-waveguide), this result
is obvious without the use of symmetry theory, but for the
Cotton–Mouton waveguide (-waveguide), it is not.
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TABLE II
CRISTALLOGRAPHIC MAGNETIC POINT GROUPS

On the whole, both of the four-ports are nonreciprocal but
the connections between the ports 1–3 and 2–4 are reciprocal.
The pairs of ports 1–3 and 2–4 for both waveguides lie in
the antiplanes of symmetry. In accordance with general theory
[5], it leads to a reciprocal connection, and it is a sufficient
condition for reciprocity.

In the matrix , the relations and
exist, but for the matrix the relations and

are valid. Formally, this is explained by a different
symmetry, i.e., by the different conditions under rotation by

about -axis and reflection in the plane . For the
-waveguide they are the GS-cases (the elementsand ),

and for the -waveguide GA cases (the elementsand ).
Physically, different effects are exhibited in these waveguides.

The connections between the ports 1 and 4, and also 2 and
3 are nonreciprocal, and the elements and , as well as

and differ by the -phase shift in both waveguides.
Another difference exists in the matrices and .

In the -waveguide the ports 1 and 2, and also 3 and 4 are
completely decoupled (i.e., )
whereas for the -waveguide these ports are coupled. A
natural question appears: Why is it so? A possible explanation
is as follows. Under availability of reflections and polarizations
effects, a signal entering port 1 will cause a signal in port 2.
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The signal from port 1 to port 2 goes by two paths
and . These two paths are shown in Fig. 7. The
reflection coefficients at the points and are equal because
of the symmetry. Hence, for the-waveguide there are two
reflected signals and in port 2:

where is a constant. These signals are out of phase and their
sum is equal to zero:

Therefore, the elements and it
is valid on every frequency.

For the -waveguide an analogous consideration leads to
the following relations:

i.e., the sum of the signals and does not equal zero.
If , the elements , , , obviously must
also be equal to zero. Under the condition , both of the
devices have the matrix of a nonreciprocal directional coupler.

This consideration shows that from the viewpoint of match-
ing, the -waveguide is more preferable.

As it has been said in [5] the nonreciprocity which appears
as a result of the analysis is not a sufficient condition. The
symmetry analysis leaves the relation between elements
and uncertain and in general this connection may be
nonreciprocal but it may be reciprocal depending on the
mutual orientation and alternating magnetic field. In
particular, the nonreciprocity and existence of polarization
effects may depend on the type of mode which propagates
in the waveguide. If this approach gives the negative result
(i.e., impossibility of solving the problem), it is the final
diagnoses. When the result is promising, further investigations
are necessary to prove the feasibility of the device.

VIII. C ONCLUSION

In this paper, all the results of the parameter matrices have
been obtained as a consequence of the geometrical symmetry
and the symmetry of the dc magnetic field. These results are
not related to a specific physical effect or a specific type of
waveguide.

The problems of theoretical feasibility of devices and the
explanation of the principles of their functioning can some-
times be made clear by using the symmetry theory. Symmetry
analysis also allows parameter matrices to be obtained and to
find out some of the general properties of components and

devices. It helps to select those structures which can be suit-
able for the fulfillment of different microwave functions and
thereby to solve the first stage of the synthesis problem. This
can be readily accomplished by means of simple calculations.
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